
A

Basic Equations of Elasticity

A.1 STRESS

The state of stress at any point in a loaded body is defined completely in terms of the
nine components of stress: σxx, σyy, σzz, σxy, σyx, σyz, σzy, σzx , and σxz, where the first
three are the normal components and the latter six are the components of shear stress.
The equations of internal equilibrium in terms of the nine components of stress can be
derived by considering the equilibrium of moments and forces acting on the elemental
volume shown in Fig. A.1. The equilibrium of moments about the x, y, and z axes,
assuming that there are no body moments, leads to the relations

σyx = σxy, σzy = σyz, σxz = σzx (A.1)

Equations (A.1) show that the state of stress at any point can be defined completely by
the six components σxx, σyy, σzz, σxy, σyz, and σzx .

A.2 STRAIN–DISPLACEMENT RELATIONS

The deformed shape of an elastic body under any given system of loads can be described
completely by the three components of displacement u, v, and w parallel to the direc-
tions x, y, and z, respectively. In general, each of these components u, v, and w is
a function of the coordinates x, y, and z. The strains and rotations induced in the
body can be expressed in terms of the displacements u, v, and w. We shall assume the
deformations to be small in this work. To derive the expressions for the normal strain
components εxx and εyy and the shear strain component εxy , consider a small rectan-
gular element OACB whose sides (of lengths dx and dy) lie parallel to the coordinate
axes before deformation. When the body undergoes deformation under the action of
external load and temperature distribution, the element OACB also deforms to the shape
O ′A′C′B ′, as shown in Fig. A.2. We can observe that the element OACB has two basic
types of deformation, one of change in length and the other of angular distortion.

Since the normal strain is defined as change in length divided by original length,
the strain components εxx and εyy can be found as

εxx = change in length of the fiber OA which lies in the x direction before deformation

original length of the fiber

= {dx + [u + (∂u/∂x)dx] − u} − dx

dx
= ∂u

∂x
(A.2)
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Figure A.1 Stresses on an element of size dxdydz.
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Figure A.2 Deformation of an element.
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εyy = change in length of the fiber OB which lies in the y direction before deformation

original length of the fiber OB

= {dy + [v + (∂v/∂y)dy] − v} − dy

dy
= ∂v

∂y
(A.3)

The shear strain is defined as the decrease in the right angle between fibers OA and
OB, which were at right angles to each other before deformation. Thus, the expression
for the shear strain εxy can be obtained as

εxy = θ1 + θ2 ≈ [v + (∂v/∂x)dx] − v

dx + [u + (∂u/∂x)dx] − u
+ [u + (∂u/∂y)dy] − u

dy + [v + (∂v/∂y)dy] − v
(A.4)

If the displacements are assumed to be small, εxy can be expressed as

εxy = ∂u

∂y
+ ∂v

∂x
(A.5)

The expressions for the remaining normal strain component εzz and shear strain com-
ponents εyz and εzx can be derived in a similar manner as

εzz = ∂w

∂z
(A.6)

εyz = ∂w

∂y
+ ∂v

∂z
(A.7)

εzx = ∂u

∂z
+ ∂w

∂x
(A.8)

A.3 ROTATIONS
Consider the rotation of a rectangular element of sides dx and dy as a rigid body by a
small angle, as shown in Fig. A.3. Noting that A′D and C′E denote the displacements
of A and C along the y and −x axes, the rotation angle α can be expressed as

α = ∂v

∂x
= −∂u

∂y
(A.9)

Of course, the strain in the element will be zero during rigid-body movement. If both
rigid-body displacements and deformation or strain occur, the quantity

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
(A.10)

can be seen to represent the average of angular displacement of dx and the angular
displacement of dy, and is called rotation about the z axis. Thus, the rotations of an
elemental body about the x, y, and z axes can be expressed as

ωx = 1

2

(
∂w

∂y
− ∂v

∂z

)
(A.11)

ωy = 1

2

(
∂u

∂z
− ∂w

∂x

)
(A.12)

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
(A.13)
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Figure A.3 Rotation of an element.

A.4 STRESS–STRAIN RELATIONS

The stress–strain relations, also known as the constitutive relations, of an anisotropic
elastic material are given by the generalized Hooke’s law, based on the experimental
observation that strains are linearly related to the applied load within the elastic limit.
The six components of stress at any point are related to the six components of strain
linearly as




σxx

σyy

σzz

σyz

σzx

σxy




=




C11 C12 C13 · · · C16
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· · · · · · ·
· · · · · · ·
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





εxx

εyy

εzz

εyz

εzx

εxy




(A.14)

where the Cij denote one form of elastic constants of the particular material.
Equation (A.14) has 36 elastic constants. However, for real materials, the condition
for the elastic energy to be a single-valued function of the strain requires the con-
stants Cij to be symmetric; that is, Cij = Cji . Thus, there are only 21 different elastic
constants in Eq. (A.14) for an anisotropic material.

For an isotropic material, the elastic constants are invariant, that is, independent of
the orientation of the x, y, and z axes. This reduces to two the number of independent
elastic constants in Eq. (A.14). The two independent elastic constants, called Lamé’s
elastic constants, are commonly denoted as λ and µ. The Lamè constants are related
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to Cij as follows:

C11 = C22 = C33 = λ + 2µ

C12 = C21 = C31 = C13 = C32 = C23 = λ

C44 = C55 = C66 = µ

all other Cij = 0

(A.15)

Equation (A.14) can be rewritten for an elastic isotropic material as

σxx = λ� + 2µεxx

σyy = λ� + 2µεyy

σzz = λ� + 2µεzz

σyz = µεyz

σzx = µεzx

σxy = µεxy

(A.16)

where
� = εxx + εyy + εzz (A.17)

denotes the dilatation of the body and denotes the change in the volume per unit volume
of the material. Lamé’s constants λ and µ are related to Young’s modulus E, shear
modulus G, bulk modulus K , and Poisson’s ratio ν as follows:

E = µ(3λ + 2µ)

λ + µ
(A.18)

G = µ (A.19)

K = λ + 2
3µ (A.20)

ν = λ

2(λ + µ)
(A.21)

or

λ = νE

(1 + ν)(1 − 2ν)
(A.22)

µ = E

2(1 + ν)
= G (A.23)

A.5 EQUATIONS OF MOTION IN TERMS OF STRESSES
Due to the applied loads (which may be dynamic), stresses will develop inside an
elastic body. If we consider an element of material inside the body, it must be in
dynamic equilibrium due to the internal stresses developed. This leads to the equations
of motion of a typical element of the body. The sum of all forces acting on the element
shown in Fig. A.1 in the x direction is given by
∑

Fx =
(

σxx + ∂σxx

∂x
dx

)
dy dz − σxx dy dz +

(
σxy + ∂σxy

∂y
dy

)
dx dz − σxy dy dz

+
(

σzx + ∂σzx

∂z
dz

)
dx dy − σzx dx dy

= ∂σxx

∂x
dx dy dz + ∂σxy

∂y
dx dy dz + ∂σzx

∂z
dx dy dz (A.24)
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According to Newton’s second law of motion, the net force acting in the x direction
must be equal to mass times acceleration in the x direction:

∑
Fx = ρ dx dy dz

∂2u

∂t2
(A.25)

where ρ is the density, u is the displacement, and ∂2u/∂t2 is the acceleration parallel
to the x axis. Equations (A.24) and (A.25) lead to the equation of motion in the x

direction. A similar procedure can be used for the y and z directions. The final equations
of motion can be expressed as

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σzx

∂z
= ρ

∂2u

∂t2
(A.26)

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
= ρ

∂2v

∂t2
(A.27)

∂σzx

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
= ρ

∂2w

∂t2
(A.28)

where u, v, and w denote the components of displacement parallel to the x, y, and z

axes, respectively. Note that the equations of motion are independent of the stress–strain
relations or the type of material.

A.6 EQUATIONS OF MOTION IN TERMS OF DISPLACEMENTS

Using Eqs. (A.16), the equation of motion, Eq. (A.26), can be expressed as

∂

∂x
(λ � + 2µεxx) + ∂

∂y
(µ εxy) + ∂

∂z
(µεxz) = ρ

∂2u

∂t2
(A.29)

Using the strain–displacement relations given by Eqs. (A.2), (A.4), and (A.8),
Eq. (A.29) can be written as

∂

∂x

(
λ� + 2 µ

∂u

∂x

)
+ ∂

∂y

[
µ

(
∂v

∂x
+ ∂u

∂y

)]
+ ∂

∂z

[
µ

(
∂w

∂x
+ ∂u

∂z

)]
= ρ

∂2u

∂t2

(A.30)

which can be rewritten as

(λ + µ)
∂�

∂x
+ µ∇2u = ρ

∂2u

∂t2
(A.31)

where � is the dilatation and ∇2 is the Laplacian operator:

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(A.32)
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Using a similar procedure, the other two equations of motion, Eqs. (A.27) and (A.28),
can be expressed as

(λ + µ)
∂�

∂y
+ µ∇2v = ρ

∂2v

∂t2
(A.33)

(λ + µ)
∂�

∂z
+ µ∇2w = ρ

∂2w

∂t2
(A.34)

The equations of motion, Eqs. (A.31), (A.33), and (A.34), govern the propagation of
waves as well as the vibratory motion in elastic bodies.


